Description des fongicides non sujets à la résistance

Vincent Philion

 

Les matières fongicides qui altèrent plusieurs mécanismes dans la biochimie des champignons ne permettent pas la sélection d’individus tolérants (résistants) au sein des populations. On retrouve dans ce regroupement toutes les matières actives plus anciennes et dont la toxicité environnementale et humaine est élevée, mais aussi les sels comme le bicarbonate qui ne laissent présager aucun risque de résistance et dont la toxicité est faible.

 

Minéraux et dérivés

Les fongicides minéraux sont les plus anciens en usage. Ils sont utilisés principalement en production biologique. Ils agissent surtout par contact, mais les sels sont également absorbés par des pores moléculaires de la cuticule des feuilles et des fruits1,2, ce qui ouvre la possibilité d’une efficacité restreinte en post infection. Ces produits comprennent le cuivre (depuis 1760), incluant la bouillie bordelaise (1885), le soufre (1824) et la bouillie soufrée (1833). Plus récemment, des essais ont démontré que les sels (ex. : CaCl2) incluant les carbonates (ex. : bicarbonate de potassium) et la chaux hydratée pouvaient aussi réprimer les maladies. Des mélanges de ces produits sont aussi possibles.

Produits à base de cuivre

Le cuivre est un métal lourd qui s’accumule de façon permanente dans les sols et est toxique pour les vers de terre, les poissons, etc. Dans plusieurs pays d’Europe, son usage est désormais interdit, ou alors la dose permise à l’hectare est fortement limitée d’ici au bannissement complet. Néanmoins, son efficacité pour combattre à la fois le feu bactérien, la tavelure du pommier et plusieurs maladies secondaires en PFI pousse les producteurs à intégrer annuellement au moins un traitement de cuivre. Un assouplissement des étiquettes des produits est prévu pour permettre un usage moins restrictif du cuivre contre la tavelure et le feu en cours de saison.

Efficacité vs phytotoxicité : Les traitements au cuivre ont démontré depuis plus de 200 ans leur efficacité contre un bon nombre de maladies, mais ils peuvent également être phytotoxiques. Ainsi, les ions de cuivre qui sont toxiques aux bactéries et aux champignons peuvent également causer des dommages aux feuilles et aux fruits. Au moins quatre facteurs importants jouent sur l’efficacité et la phytotoxicité du cuivre : la formulation, la dose, la disponibilité (pH) et le volume d’application.

Formulation : Le cuivre en solution (sulfate de cuivre pentahydraté) est immédiatement disponible et a le plus gros potentiel de phytotoxicité. Différents mélanges et différentes formulations de cuivre le rendent moins immédiatement disponible. Ralentir ou « fixer » le cuivre diminue (mais n’élimine pas) la phytotoxicité. Le cuivre « fixe » (peu importe sa formulation) est conçu pour laisser un résidu peu soluble à la surface des feuilles. Lorsque le feuillage est mouillé, les ions cuivre s’échappent lentement de ces dépôts et s’attaquent aux bactéries et champignons. Cette libération graduelle du cuivre maintient une efficacité pendant une plus longue période et évite que la concentration d’ions devienne trop grande et provoque l’effet phytotoxique redouté. En pomiculture, on utilise seulement des formulations de cuivre « fixe ». Au Canada, il existe cinq possibilités : hydroxyde, oxychlorure, octanoate, sulfate tribasique et bouillie bordelaise maison. Nos voisins américains ont accès à plusieurs autres formulations (ex. : oxyde de cuivre3) et des mélanges (ex. : C-O-C-S, oxychlorure + sulfate), avec des adjuvants comme le gypse et d’autres éléments qui ont pour fonction de « fixer » le cuivre. En Europe, l’éventail des possibilités est encore plus grand. Toutes les formulations de cuivre sont homologuées en production biologique, mais certains producteurs continuent de privilégier la bouillie bordelaise. La bouillie bordelaise n’est pas recommandée en PFI puisque les autres produits plus simples à manipuler existent.

L’efficacité des produits cuivrés est surtout liée à la quantité de cuivre traitée et à la finesse des particules en suspension3 et pas tellement leur formulation. Dans ce contexte, il peut être approprié de considérer seulement le coût par kilogramme d’ingrédients actifs pour guider son choix. Cette règle est applicable même pour les produits plus récents comme l’octanoate, puisque les données disponibles ne permettent pas de garantir que ce produit a une efficacité égale avec moins de cuivre métal.

Dose : La quantité de cuivre requise par application dépend du type de traitement et a un impact direct sur la phytotoxicité. Selon l’usage, la dose peut être optimisée. Les doses homologuées (ex. : 3,2 kg/ha pour l’oxychlorure) sont souvent conçues pour laisser un dépôt important sur le bois en début de saison et maintenir une efficacité à long terme (pendant quelques semaines). Le cuivre est alors libéré et lessivé graduellement. Pour des traitements réguliers contre la tavelure ou le feu, la dose requise est moindre et l’effet recherché est immédiat. Par exemple, réduire la dose de > 10x soit appliquer 0,3 kg/ha de formulation (50 % cuivre sous forme d’oxychlorure) donne environ 150 g de métal par hectare, une dose encore suffisante pour combattre la tavelure lorsque les applications sont ciblées. Les producteurs bio en Nouvelle-Zélande4 réussissent à réprimer la tavelure aussi bien qu’avec un programme conventionnel en utilisant de 1,2 à 1,5 kg de cuivre métallique par hectare pendant toute la saison (sur environ six traitements), soit 200 à 300 g/ha de cuivre par traitement bien ciblé; les autres traitements étant à base de soufre. Par contre, des doses plus élevées (ex. : 800 g/ha de formulation) sont rapportées pour des applications non ciblées (de type calendrier)5. Même avec une dose faible, toutes les formulations peuvent provoquer une rugosité commercialement inacceptable dans les traitements à fort volume (ex. : 1000 L/ha)6.

Effet du pH : La vitesse de libération des ions cuivre est fonction de l’acidité de l’eau. Plus l’eau est acide (pH faible), plus les résidus libèrent d’ions cuivre. Inversement, lorsque le pH est alcalin, la toxicité du cuivre envers les bactéries et les champignons diminue parce que moins d’ions sont libérés. La sensibilité au pH continue après l’application. Dans les blocs traités au cuivre au printemps (usage unique), il faut éviter les traitements « acidifiants » avec des produits comme le phosphonate, le LI700 et les bouillies acides en général, parce que la libération de cuivre serait trop forte.

Volume d’eau : Réduire le volume de bouillie à l’hectare (ex. : 300 L/ha7) lors des applications et viser des périodes de séchage rapide peut grandement diminuer les risques de phytotoxicité du cuivre lors des applications régulières. Pour éviter la phytotoxicité, le cuivre n’est pas recommandé sur feuillage humide (rosée) ou pendant la pluie. Ce produit n’est donc pas recommandé pendant la fenêtre de germination de la tavelure. Cependant, certains auteurs recommandent malgré tout le cuivre à dose faible en mélange avec du soufre pendant la période de germination des spores7,8.

Autres contraintes : Le cuivre appliqué juste avant des périodes de froid pourrait accentuer les dégâts de gel3,9. Les programmes d’applications à base de cuivre pour lutter contre la tavelure peuvent affecter la coloration de certains cultivars6 en comparaison aux programmes de lutte plus conventionnels.

Recommandations d’usage pour les produits commerciaux à base de cuivre :

Produits commerciaux :

Produits à base de soufre

Le soufre (toutes les formulations) est un fongicide à action multisites ayant aussi des propriétés acaricides, surtout (et malheureusement) contre les acariens prédateurs. L’utilisation régulière de soufre à dose élevée entraîne souvent des problèmes d’acariens21, le soufre est cependant utilisé pour réprimer le « rust mite » (ériophyides) (Triloff, comm. pers.). L’effet sur les prédateurs n’est pas rapporté aux doses faibles recommandées en PFI7.

Tous les produits à base de soufre sont efficaces contre plusieurs maladies fongiques. Par contre, le soufre est peu résiduel et généralement moins efficace que les fongicides de synthèse à moins que les traitements soient réalisés au moment optimum (ex. : traitement de germination).

Phytotoxicité liée à la chaleur : L’utilisation de toutes les formulations de soufre comporte un risque élevé de phytotoxicité (brûlure, roussissure sur les fruits) si utilisés par temps chaud (> 29 °C)22. Les brûlures apparaissent surtout sur les fruits orientés vers le sud-ouest, où la surface des fruits est la plus exposée (Triloff). Le soufre ne devrait jamais être appliqué si des températures très élevées sont prévues au cours des prochains jours. En absence de pluie pour lessiver le soufre en place, la phytotoxicité due à la chaleur peut survenir lors d’une canicule, lorsque le temps est « lourd » (humide, sans vent) et ce, plusieurs semaines après l’application (Trapman, comm. pers.). L’ouverture des stomates par temps très humide est possiblement le point d’entrée pour la sublimation gazeuse de soufre à la surface des fruits (Triloff).

Cette phytotoxicité du soufre n’est pas réduite en pulvérisant avec de petites gouttelettes, n’est pas affectée par le temps de séchage et est possible même à très faible dose (Triloff, comm. pers.). Les risques diminuent très légèrement à la fin de l’été avec la baisse de l’intensité solaire (angle) (Triloff).

Pour minimiser les risques d’insolation en période de risque liés à la chaleur, les produits à base de soufre devraient être appliqués immédiatement avant une période de pluie prévue, ou pendant la pluie, mais non après les pluies.

Les produits à base de soufre sont aussi phytotoxiques lorsqu’ils sont mélangés avec de l’huile ou tout autre produit contenant des distillats de pétrole. Il faut respecter un minimum d’une semaine avant ou après une application de soufre (ou ses dérivés) pour appliquer de l’huile.

Certains cultivars de fruits sont très sensibles au soufre, alors que d’autres bénéficient des traitements. L’utilisation répétée du soufre à la dose élevée de l’étiquette a généralement un effet cumulatif néfaste sur la physiologie des arbres. L’utilisation répétée du soufre en été peut augmenter les problèmes de pourriture noire (fiche 110) et d’autres pourritures estivales, probablement par un effet phytotoxique sur les lenticelles des fruits. Une partie des problèmes liés au soufre peuvent être atténués voire éliminés en diminuant la dose par rapport à celle préconisée sur l’étiquette. À dose faible (4-5 kg/ha en équivalent soufre), les problèmes associés au soufre sont assez mineurs23.

Aux doses faibles proposées en PFI, le soufre garde certains effets négatifs mineurs sur la photosynthèse6, un effet d’éclaircissage6, affecter la coloration de certains cultivars6, mais peut aussi augmenter les rendements par son action fertilisante8.

Il existe trois types de formulations de soufre : 1) le soufre élémentaire presque pur; 2) formulé avec des adjuvants; 3) en mélange avec de la chaux éteinte pour produire la chaux soufrée (voir cette section). Pour une quantité égale de soufre, la chaux soufrée est la plus efficace contre la tavelure7 mais aussi la plus toxique aux arbres. Le soufre élémentaire (et formulé) est parfois recommandé en mélange avec du cuivre7 (voir la section sur le cuivre).

Les produits à base de soufre sont tous admissibles en production biologique. Toutes les étiquettes de soufre stipulent un maximum de huit applications par année.

Soufre élémentaire et formulé : Le soufre élémentaire à 92 % est une poudre mouillable qui peut être appliquée avec un pulvérisateur conventionnel mais qui était aussi traditionnellement poudrée sans eau sur les cultures, notamment pour le blanc. Le soufre à 80 % est vendu sous différentes formulations granulaires qui permettent de faciliter la dispersion du soufre dans l’eau et de créer une suspension uniforme.

Outre son effet sur le blanc et la tavelure, le soufre élémentaire (et formulé) en mélange à l’argile (Kaolin) peut réduire la roussissure pendant la période post florale.

Bouillie ou chaux soufrée : Ce produit est aussi connu sous le nom de bouillie nantaise, bouillie versaillaise21, eau de Grison21, bouillie sulfo-calcique, polysulfure de calcium, sulfure de calcium (en anglais, calcium polysulfide, lime sulfur ou LLS pour Liquid Lime Sulfur) et était traditionnellement fabriquée à la ferme, mais les formulations commerciales standardisées sont préférables. La bouillie nantaise est le tout premier pesticide synthétique (fabriqué par l’homme), mais est néanmoins admissible en production biologique. Il est utilisé à la fois comme traitement insecticide au stade dormant (psylle du poirier, pucerons, cochenille), comme acaricide, bactéricide, agent éclaircissant et comme fongicide. Jusqu’à l’arrivée du bicarbonate de potassium, la bouillie soufrée était le seul fongicide approuvé en agriculture biologique qui pouvait être appliqué pour réprimer la tavelure en traitement post infection. De plus, la chaux soufrée est efficace contre le complexe suie-moucheture26 et le blanc. Cependant, la bouillie n’est pas efficace contre les pourritures de fruits (ex. : pourriture amère)26. La bouillie est alcaline (pH > 11) et est donc incompatible en mélange avec la plupart des pesticides.

L’utilisation répétée de la bouillie soufrée à la dose homologuée est phytotoxique sur feuillage et peut causer une roussissure inacceptable sur certains cultivars (ex. : Gala, Jonagold, Golden21). Une partie des problèmes de phytotoxicité disparaît dans les traitements à volume faible. De plus, la bouillie soufrée est efficace à partir de 5 L/ha et n’est pas phytotoxique à cette dose réduite. Contrairement aux indications de l’étiquette, la bouillie soufrée peut être utilisée sur feuillage humide, sauf pendant la période critique pour le roussissement (fiche 108). Le cultivar Red Delicious serait sensible à la bouillie soufrée, même en été.

En été, la bouillie soufrée est efficace contre la suie-moucheture à une dose faible (7 L/ha) mais pas contre la pourriture noire28.

Note : Un dérivé de la bouillie soufrée appelé « soufre colloïdal » peut être fabriqué à la ferme en ajoutant simplement du sulfate de fer (500 g/ha) au réservoir contenant la bouillie soufrée commerciale. Cette variation crée par Tafradzhijski est très prisée en Europe de l’Est. Le soufre colloïdal serait moins phytotoxique que la bouillie soufrée standard. Ce mélange serait légal dans la mesure où le fer est appliqué comme engrais foliaire.

Sels et autres molécules inorganiques simples

Plusieurs sels sont efficaces pour réprimer différentes maladies. Les sels peuvent agir par contact avec les agents pathogènes à la surface des plantes, mais aussi dans la plante. La cuticule des plantes est une barrière généralement efficace pour l’eau et prévient la déshydratation. Cependant, cette barrière n’est pas parfaite et les sels appliqués en solution sur les surfaces aériennes des plantes peuvent être absorbés (ex. : l’urée comme engrais foliaire). Le principe s’applique pour le calcium et d’autres éléments. Cette pénétration des sels est passive et résulte d’un processus physique simple. Les sels et l’eau passent lentement la barrière cuticulaire cireuse par des pores aqueux de dimension moléculaire1. Tant que la plante demeure mouillée ou que l’humidité relative de l’air reste au-dessus du point de déliquescence du sel (hygroscopicité), les sels continuent d’entrer dans la plante par cette voie. Il est possible de prédire la vitesse de pénétration du sel dans la plante par sa constante de déliquescence. Cependant, comme la pluie lessive également les sels, la quantité réellement absorbée par la plante est limitée par l’intensité de la pluie après le traitement. Des tensioactifs (surfactants) sont nécessaires pour maximiser le contact entre les sels et la cuticule et ainsi maximiser leur pénétration dans la plante.

Carbonates : Les carbonates (carbonate et bicarbonate (monohydrogéno)) sont des sels basiques très solubles qui n’ont aucune rémanence sur le feuillage dès qu’il pleut. De plus, les carbonates ont une efficacité généralement assez faible contre les champignons. Par exemple, les carbonates peuvent inhiber partiellement la germination des spores de la tavelure, mais seulement à des doses très élevées (ex. : K2CO3 (9 g/L)29). Cependant, les carbonates sont en partie absorbés par la cuticule2 et ont donc une efficacité en post infection. Quand les carbonates sont bien synchronisés en post infection et qu’ils peuvent agir sans être lessivés, ils sont efficaces contre la tavelure du pommier. Ils sont aussi connus pour leur efficacité à réprimer le blanc dans plusieurs cultures. Le carbonate de calcium (CaCO3, calcaire, ou craie non soluble) n’a pas d’effet utile contre la tavelure30.

Selon la fréquence d’utilisation et à dose élevée (ex. : 10 kg/ha), les carbonates peuvent provoquer une chlorose (jaunissement) du feuillage. Les nombreuses formulations commerciales de carbonates dans le monde (ARMICARB, ASTRAL, BI-CARB, KALIGREEN, OMNI PROTECT, TUI ECO-FUNGICIDE, VITISAN) sont souvent plus efficaces que le bicarbonate pur contre la tavelure25, mais peuvent être plus phytotoxiques que la matière active utilisée seule31.

Autres sels :

Autres molécules inorganiques simples :

 

Tensioactifs et autres adjuvants (surfactants, agents mouillants) (en anglais : spreader/sticker)

Les adjuvants ont une variété d’effets, mais sont surtout utilisés pour faciliter la répartition de la bouillie de pulvérisation et contrôler la mousse (tensioactifs), « coller » le produit en place (adsorption), faciliter la pénétration dans la plante (absorption), ou simplement ajuster le pH. Ils sont souvent intégrés comme additifs aux formulations commerciales, mais il est également possible d’en ajouter lors des traitements. Certains manufacturiers en font la promotion parce qu’ils peuvent augmenter l’efficacité des traitements. Les adjuvants n’ont en général pas d’effet direct sur les maladies, mais leur effet indirect sur la répartition et l’adsorption des gouttelettes peut être appréciable dans la gestion des maladies. Certains produits ont aussi parfois un effet direct sur les spores, notamment pour lutter contre la tavelure, mais cette efficacité est relativement faible.

Les adjuvants tensioactifs (surfactants) réduisent la tension de surface, ce qui a pour effet d’écraser les gouttes et donc d’augmenter la surface qu’elles occupent. La bouillie prend plus la forme d’un film d’eau que de gouttes individuelles. C’est l’effet « mouillant ». Leur usage est plus important avec les buses à grosses gouttes. Les tensioactifs sont catégorisés selon leur charge ou polarité (ioniques, ou non). Les agents anti mousse (ex. : dimethylpolysiloxane) sont souvent intégrés aux formulations des tensioactifs.

Certains adjuvants ont aussi une propriété « collante » (sticker) qui limitent le lessivage par la pluie49, les pertes par évaporation, ou par le soleil (photodégradation). Finalement, certains adjuvants sont à la fois mouillants et collants. Cependant, les meilleurs agents collant (ex. : latex et résines) ne sont pas aussi efficaces comme agents mouillants. Même si l’idée de « coller » un fongicide peut sembler intéressante, l’utilité pour des maladies comme la tavelure et le blanc est limitée puisque la durée de protection est plus souvent limitée par la croissance des feuilles que par le lessivage par la pluie.

D’autres adjuvants sont conçus pour réduire la dérive en augmentant la viscosité et le diamètre des gouttelettes. Comme ces produits peuvent altérer la répartition des gouttelettes et nuire à l’efficacité de vos traitements, il est préférable d’adopter d’autres méthodes de réduction de la dérive.

Malgré leur potentiel, les adjuvants ne sont pas toujours utiles et peuvent même être responsables de réactions phytotoxiques. Mélanger des adjuvants avec des pesticides qui en contiennent déjà peut avoir des effets parfois imprévisibles.

Par exemple, les produits conçus pour abaisser le pH (ex. : LI-700) peuvent augmenter l’efficacité des fongicides comme le Captan lorsque l’eau est alcaline, mais neutralisent l’effet des produits comme le bicarbonate de potassium et peuvent augmenter l’effet phytotoxique des produits comme le cuivre. Certains tensioactifs non ioniques éthoxylés (ethoxylated surfactants) (ex. : Agral, Enhance, Ag-Surf) peuvent nuire à l’absorption du calcium44 ou modifier la couche cireuse et provoquer une phytotoxicité50 ou une augmentation des maladies. Finalement, les adjuvants doivent être homologués pour la culture. Le choix de l’adjuvant est donc important.

Produits commerciaux (ou ingrédient générique) :

 

Fongicides de contact multisites

Les fongicides de contact homologués en pomiculture sont issus de deux grands groupes de fongicides (Dithiocarbamates et Dicarboximides) développés il y a une cinquantaine d’années et le fluazinam (Pyridinamine), breveté il y a un peu plus de vingt ans. Les quinones, qui ne sont plus homologués au Canada, sont présentés dans la liste du fait de leur importance historique et leur utilisation actuelle en pomiculture dans la plupart des pays exportateurs de pommes.

Tous les produits issus de ces familles sont des génériques qui ne sont plus protégés par brevet. Ils partagent une efficacité contre une gamme variée de maladies, incluant la tavelure et le complexe suie-moucheture, mais aucun n’est très efficace contre le blanc du pommier. Ces produits agissent surtout par contact. C’est à dire qu’ils doivent être appliqués avant l’arrivée des spores du champignon visé ou pendant leur germination puisqu’ils ont une efficacité limitée en post infection. À l’exception du fluazinam, ces produits n’adhèrent qu’assez peu à la cuticule des feuilles et ne sont pas absorbés. Ils sont donc lessivés graduellement par les pluies. Vu leurs modes d’actions complexes, ils sont rarement sujets à la résistance et la rotation entre les familles de fongicides de contact ou leur mélange n’est donc pas utile à cet égard. Malgré leurs similitudes, les différents produits ont des particularités propres dont il faut tenir compte dans le choix des produits à traiter.

Dithiocarbamates

Historiquement, les dithiocarbamates ont remplacé le soufre et le cuivre parce qu’ils étaient actifs à des doses moindres et moins phytotoxiques. En plus des maladies réprimées par tous les fongicides de contact, les dithiocarbamates sont efficaces contre la tache ocellée et d’autres maladies mineures. Aux États-Unis, les dithiocarbamates sont surtout prisés pour leur efficacité contre la rouille, une maladie quasi absente au Québec. Aucun cas de résistance n’a jamais été rapporté contre les dithiocarbamates. L’avantage majeur des dithiocarbamates est leur compatibilité en mélange avec la plupart des autres pesticides, les régulateurs de croissance et les engrais foliaires alors que les autres familles de produits ont souvent des restrictions d’usage importantes pour éviter la phytotoxicité. Par exemple, les dithiocarbamates sont compatibles en mélange avec l’huile.

Par ailleurs, les dithiocarbamates ont tous des effets toxiques à des degrés divers contre les prédateurs d’acariens dont il faut tenir compte en PFI. Aucun fongicide de cette famille n’est admis dans les cahiers de charge de PFI de nombreux pays.

Le premier dithiocarbamate à avoir été homologué est le THIRAM. Par la suite, différentes variations ont été découvertes comme le FERBAM et le ZIRAM. Plus récemment dans les années 1960, un sous-groupe (EBDC) comprenant le mancozèbe, (une combinaison de manèbe et de zineb) et le métirame ont été homologué. Chacun se distinguait par les ions (fer, zinc, etc.) coordonnés à la portion dithiocarbamate qui était commune à tous les produits. Les différents ions conféraient aux produits des propriétés particulières et servaient d’engrais foliaire. Les éléments présents dans chaque produit sont indiqués dans la liste.

Le sous groupe des EBDC partage une même toxicologie incluant leur principal produit de décomposition, l’éthylènethiourée (ETU). Conséquemment, les mêmes restrictions s’appliquent aux EBDC homologués, incluant un délai d’usage de 45 jours avant récolte. Certaines craintes quant à la toxicité du ETU font en sorte que l’homologation du métirame a été entièrement révoquée et que celle du mancozèbe est en révision.

Produits commerciaux :

Phthalimides

Classe de fongicides variés issus du groupe des dicarboximides. Dans cette classe, différents fongicides ont été utilisés en pomiculture, dont le DIFOLATAN (captafol) qui a été retiré en 1988. Deux molécules de ce groupe sont encore homologuées au Canada en pomiculture, soit le captane et le folpet. Le CAPTAN et le FOLPAN (folpet) sont très similaires. Le renouvellement de l’homologation du Captan (2018) et du Folpet (2020) ont restreint les possibilités d’usage pour ces deux fongicides.

Produits commerciaux :

Pyridinamines (pyridine)60,61

Classe de fongicide représentée dans la pomme avec un seul produit.

ALLEGRO 500F (40 % fluazinam) : Le fluazinam est un fongicide développé dans les années 1980. Fongicide à large spectre qui inhibe la germination et la croissance mycéliale des spores. Malgré son effet sur le mycélium, le fluazinam ne serait efficace qu’en protection60. Cependant des tests en serres ont démontré une efficacité en post infection contre la tavelure62. Contrairement aux autres fongicides de contact, le fluazinam ne serait pas lessivé par la pluie. Le renouvellement des traitements est donc en fonction de la croissance. Ce produit est homologué et efficace en prévention pour réprimer la tavelure du pommier63,64, le complexe suie-moucheture et des maladies mineures comme les rouilles, l’alternariose, la pourriture noire, les pourritures estivales (gloesporiose) et le Brooks spot (Mycosphaerella pomi). Par contre, son utilité pour les maladies mineures est limitée par le délai avant récolte de 28 jours.

Pour la tavelure, l’efficacité de la dose maximale homologuée de 1 L/ha (400 g actif par hectare) est similaire à celle obtenue avec une demi-dose de captane (1,9 kg/ha). De très bons résultats sont possibles avec 300 g ai/ha65. L’étiquette indique qu’un minimum de 1000 L/ha soit requis pour la pulvérisation, mais cette recommandation n’est pas nécessaire et les traitements peuvent être faits à volume réduit comme pour les autres produits. Allegro est régulièrement utilisé avec 200 L/ha dans d’autres cultures. L’utilisation régulière d’ALLEGRO à la dose maximale réprime partiellement les populations d’acariens phytophages (tétranyque rouge, à deux points, ériophyide)60, mais n’aurait pas d’impact sur les prédateurs63. Le produit est compatible avec les traitements d’huile. En PFI, le produit est classé rouge en lien avec l’indice santé alors qu’il est classé « à risques réduits » par l’ARLA.

Quinones

Cette vieille famille de fongicides comprend différents produits dont le dichlone (PHYGON) qui n’est plus homologué dans la pomme, mais qui comprend également le dithianon59 (DELAN), encore largement autorisé en Europe66 et ailleurs dans le monde mais jamais homologué en Amérique. Le DELAN est le fongicide multisite le plus utilisé en Europe. Très efficace contre la tavelure à 500 g d’ingrédients actifs par hectare65.

 

NOTE : La liste est complète en date de publication de ce document. À chaque début de saison, le Réseau d’avertissements phytosanitaires (RAP) du pommier diffuse les ajouts et retraits de pesticides par le biais de communiqués. Consultez la fiche 9 pour en savoir plus sur le RAP. Pour une information complète et à jour sur les pesticides, visitez le service en ligne d’information sur les pesticides du gouvernement du Québec (http://www.sagepesticides.qc.ca) et du Canada (http://pr-rp.hc-sc.gc.ca/ls-re/index-fra.php).

ATTENTION DOSES RÉDUITES : l’ARLA ne prend pas action contre ceux qui préconisent de telles pratiques, si elles n’entraînent pas de danger pour la santé ou la sécurité humaine ou pour l’environnement et qu’elles ne sont pas destinées à promouvoir la vente de produits antiparasitaires. Si toutefois l’utilisation de doses réduites ou adaptées devait entraîner des pertes pour les utilisateurs, les conseillers ou les organisations qui les recommandent pourraient être tenus responsables de leurs recommandations dans des actions civiles.

 

Références
  1. Schönherr J. Characterization of aqueous pores in plant cuticles and permeation of ionic solutes. J Exp Bot 2006;57:2471‑91.
  2. Schönherr J. Foliar nutrition using inorganic salts: laws of cuticular penetration. In: International Symposium on Foliar Nutrition of Perennial Fruit Plants 594 Internet 2001.77–84. Disponible sur : http://www.actahort.org/books/594/594_5.htm.
  3. Rosenberger D, Iungerman K. Tree fruit copper sprays – options, benefits, liabilities. Cornell university cooperative extension Northeast Tree Fruit 2012;16.
  4. Tate KG, Manktelow DW, Walker JT, Stiefel H. Disease management in Hawkes Bay apple orchards converting to organic production. N Z Plant Prot 2000;53:1‑6.
  5. Yoder KS, Cochran, A.E., Royston WS, Kilmer SW. Test of coppers and biopesticides for the control of fire blight and apple scab on Gala apple, 2016. Plant Dis Manag Rep 2017;11:PF024.
  6. Palmer JW, Davies SB, Shaw PW, Wünsche JN. Growth and fruit quality of ‘Braeburn’ apple (Malus domestica) trees as influenced by fungicide programmes suitable for organic production. N Z J Crop Hortic Sci 2003;31:169–177.
  7. Jamar L, Pahaut B, Lateur M. A low input strategy for scab control in organic apple production. In: Organic Fruit Conference 873 Internet 2008.75–84. Disponible sur : http://www.actahort.org/books/873/873_6.htm.
  8. Jamar L. Innovative strategies for the control of apple scab (Venturia inaequalis [Cke.] Wint.) in organic apple production. Université de Liège, 2011.
  9. Lehnert R. Working with copper. Good Fruit Grower. 2013. Disponible sur : https://www.goodfruit.com/working-with-copper/.
  10. Comité de protection des vergers. Manuel de pulvérisation du verger. Ministère de l’agriculture, Québec, 1957.
  11. Yoder KS, Cochran AE, Royston WS, Kilmer SW. Fire blight blossom blight and fungal disease suppression and fruit finish effects by coppers and Blossom Protect, 2014. Plant Dis Manag Rep 2015;9:PF020.
  12. Yoder KS, Cochran AE, Royston WS, Kilmer SW, Kowalski A. Fire blight blossom blight test on Idared apple, 2017. Plant Dis Manag Rep 2018;12:PF036.
  13. Peter KA. Disease Update: Dealing with Fire Blight Infections. PennState Extension. 2018. Disponible sur : https://extension.psu.edu/disease-update-dealing-with-fire-blight-infections.
  14. Beresford RM, Walker JTS, Spink MJ, Marshall RR, White V. Copper and slaked lime for the control of black spot and powdery mildew in apples. In: Proceedings of the New Zealand Plant Protection Conference 1995.83–88.
  15. Yoder KS, Cochran AE, Royston WS, Kilmer SW, Borden, M.A. L, Repass, J.K. Evaluation of shoot blight suppression, summer disease control, and fruit finish by post-bloom copper applications on Gala apple, 2015. Plant Dis Manag Rep 2016;10:PF008.
  16. Cox KD, Villani SM, Ayer K, Tancos KA. Evaluation of bactericide and chemical regulator programs for the management of fire blight on ‘Idared’ apples in NY, 2015. Plant Dis Manag Rep 2016;10:PF014.
  17. Cox KD, Ayer K, Kuehne S. Evaluation of bactericide programs for the management of fire blight on « Gala » apples in NY, 2016. Plant Dis Manag Rep 2017;11:PF003.
  18. Yoder KS, Cochran AE, Royston WS, Kilmer SW, Borden, M.A. L, Repass, J.K. Shoot blight suppression, fruit finish, and summer disease control by Cueva and Double Nickel on Gala apple, 2013. Plant Dis Manag Rep 2014;8:PF023.
  19. Yoder KS, Cochran AE, Royston WS, Kilmer SW. Shoot blight suppression, summer disease control, and fruit finish by post-bloom applications on Gala apple, 2014. Plant Dis Manag Rep 2015;9:PF018.
  20. Parker KG, Fisher EG, Mills WD. Fire blight on pome fruits and its control. New York State College of Agriculture, 1956.
  21. Lhoste J. Les fongicides. Paris: Office de la Recherche Scientifique et Technique Outre-Mer (ORSTOM), 1961.
  22. Cowgill Jr WP, Oudamans P, Ward D, Rosenberger D. Not understanding phytotoxicity can damage your bottom line. Fruit Notes 2013;78:15‑23.
  23. Holb IJ, Jong PFD, Heijne B. Efficacy and phytotoxicity of lime sulphur in organic apple production. Ann Appl Biol 2003;142:225‑33.
  24. Holb IJ, Kunz S. Integrated control of apple scab and powdery mildew in an organic apple orchard by combining potassium carbonates with wettable sulfur, pruning, and cultivar susceptibility. Plant Dis Am Phytopath Society, 2016;100:1894–1905.
  25. Jamar L, Lefrancq B, Lateur M. Control of apple scab (Venturia inaequalis) with bicarbonate salts under controlled environment. J Plant Dis Prot 2007;114:221–227.
  26. Lalancette N, Blaus L, Feldman P. Evaluation of Serenade Optimum and Lime-Sulfur for Disease Management in Organic Apple Orchards. Fruit Notes 2017;82:9‑13.
  27. Philion V, Joubert V. Use pattern and limits of potassium bicarbonate for apple scab control in Quebec orchards. IOBC-WPRS Bull 2015;110:199‑212.
  28. Rosenberger D, Cox K. Integration of OMRI-Approved Fungicides, Sanitation, and Cultural Controls for Managing Summer Diseases on Apples. 2010; Disponible sur : https://ecommons.cornell.edu/handle/1813/42458.
  29. Schulze K, Schönherr J. Calcium hydroxide, potassium carbonate and alkyl polyglycosides prevent spore germination and kill germ tubes of apple scab (Venturia inaequalis)/Calciumhydroxid, Kaliumcarbonat und Alkylpolyglykoside verhindern die Sporenkeimung und töten Keimschläuche von Apfelschorf (Venturia inaequalis) ab. Z Für Pflanzenkrankh PflanzenschutzJournal Plant Dis Prot 2003;36–45.
  30. Montag J, Schreiber L, Schönherr J. An in vitro study on the postinfection activities of hydrated lime and lime sulphur against apple scab (Venturia inaequalis). J Phytopathol 2005;153:485–491.
  31. Kelderer M, Claudio C, Lardschneider E. Formulated and unformulated carbonates to control apple scab (Venturia inaequalis) on organic apple. In: Ecofruit Internet Fördergemeinschaft Ökologischer Obstbau eV (FÖKO), 2008.47–53. Disponible sur : http://orgprints.org/13641/1/047-053.pdf.
  32. Hall FH. Bulletin: Number 140, Edition popular: Wood Ashes Not an Apple Scab Preventive. Agricultural Experiment Station, 1897.
  33. Grimm-Wetzel P, Schönherr J. Erfolgreiche bekämpfung des apfelschorfs mit kalziumhydroxid. Erwerbs-Obstbau Springer, 2005;47:131–137.
  34. Weibel FP, Lemcke B, Monzelio U, Giordano I, Kloss B. Successfull Blossom Thinning and Crop Load Regulation for Organic Apple Growing with Potassium-bi-carbonate (Armicarb (R)): Results of Field Experiments over 3 Years and with 11 Cultivars. Eur J Hortic Sci 2012;77:145–153.
  35. Kunz S, Hinze M. Assessment of biocontrol agents for their efficacy against apple scab. In: Proceedings of the 16th International Conference on Organic Fruit Growing Internet 2014. Disponible sur : http://www.ecofruit.net/2014/9RP_Kunz_biocontrol_agents_p65-71.pdf.
  36. Kuu W-Y, Chilamkurti R, Chen C. Effect of relative humidity and temperature on moisture sorption and stability of sodium bicarbonate powder. Int J Pharm 1998;166:167–175.
  37. Beresford RM, Wearing CH, Marshall RR, Shaw PW, Spink MJ, Wood PN. Slaked lime, baking soda and mineral oil for blackspot and powdery mildew control in apples. Proc N Z Plant Prot Conf 1996;49:106‑13.
  38. Philion V, Joubert V. Mise au point sur l’utilisation du bicarbonate de potassium pour lutter contre la tavelure du pommier. 2015. Report No.: IRDA-1-13-AD09. Disponible sur : http://www.mapaq.gouv.qc.ca/SiteCollectionDocuments/Agroenvironnement/AD09_Rapport.pdf.
  39. Grimm-Wetzel P, Schönherr J. Successful control of apple scab with hydrated lime. In: Ecofruit Fördergemeinschaft Ökologischer Obstbau eV (FÖKO), 2006.83–86.
  40. Washington WS, Villalta O, Appleby M. Control of pear scab with hydrated lime alone or in schedules with other fungicide sprays. Crop Prot 1998;17:569–580.
  41. Long GS. Calcium chloride fruit blossom thinning agent. 2002. Disponible sur : http://www.google.com/patents/US6440901.
  42. Percival GC, Haynes I. The influence of calcium sprays to reduce fungicide inputs against apple scab (Venturia inaequalis (Cooke) G. Wint.). Arboric Urban For 2009;35:263–270.
  43. Sugar D, Righetti TL, Sanchez EE, Khemira H. Management of Nitrogen and Calcium in Pear Trees for Enhancement of Fruit Resistance to Postharvest Decay. HortTechnology 1992;2:382‑7.
  44. Schlegel TK, Schönherr J. Mixing calcium chloride with commercial fungicide formulations results in very slow penetration of calcium into apple fruits. J Plant Nutr Soil Sci 2004;167:357‑62.
  45. Peryea FJ, Neilsen D, Neilsen G. Boron Maintenance Sprays for Apple: Early-season Applications and Tank-mixing with Calcium Chloride. HortScience 2003;38:542‑6.
  46. Grimm-Wetzel P, Schönherr J. Spritzungen mit Calciumchlorid erhöhen die Calcium- und reduzieren die Kaliumkonzentrationen der peripheren Schichten von Apfelfrüchten. Erwerbs-Obstbau 2007;49:75‑83.
  47. Bai RQ, Schlegel TK, Schönherr J, Masinde PW. The effects of foliar applied CaCl2·2H2O, Ca(OH)2 and K2CO3 combined with the surfactants Glucopon and Plantacare on gas exchange of 1 year old apple (Malus domestica BORKH.) and broad bean (Vicia faba L.) leaves. Sci Hortic 2008;116:52–57.
  48. Yamane T. Foliar Calcium Applications for Controlling Fruit Disorders and Storage Life in Deciduous Fruit Trees. Jpn Agric Res Q JARQ 2014;48:29‑33.
  49. Beckerman JL. Fruit Diseases: Using Adjuvants in Apple Disease Management. Purdue University Cooperative Extension Internet 2016; Disponible sur : https://extension.purdue.edu/extmedia/BP/BP-198-W.pdf.
  50. Roy S, Conway WS, Buta JG, Watada AE, Sams CE, Wergin WP. Surfactants affect calcium uptake from postharvest treatment of « Golden delicious » apples. J Am Soc Hortic Sci 1996;121:1179‑84.
  51. Walker JTS, Shaw PW, Stevens PJG. Evaluation of Silwet L-77 as an adjuvant for sprays to control apple pests and diseases. Proc NZ Plant Prot Conf 1992;45:274‑8.
  52. Knoche M. Organosilicone surfactant performance in agricultural spray application: a review. Weed Res 1994;34:221‑39.
  53. Zimmer J, Benduhn B, Mayr U, Kunz S, Rank H. Strategy to reduce the investment of copper for control of apple scab in organic apple growing. In: Ecofruit Internet Fördergemeinschaft Ökologischer Obstbau eV (FÖKO), 2012.22–28. Disponible sur : https://www.cabdirect.org/cabdirect/abstract/20133110089.
  54. Abbott CP, Beckerman JL. Incorporating Adjuvants with Captan to Manage Common Apple Diseases. Plant Dis 2018;102:231–236.
  55. Sup CH. Retention, Tenacity and Effect of Insecticides in the Fungicidal Control of Apple Bitter Rot. Korean J Appl Entomol 1970;9:75‑80.
  56. Aćimović SG, Meredith CL. Evaluation of SDHI and DMI fungicides in mix with surfactants and of new DMI revysol® for control of apple scab in the Hudson valley. N Y Fruit Q 2019;27.
  57. Rosenberger D. The captan conundrum: scab control vs. phytotoxicity. Scaffolds fruits journal 2013;22:6‑8.
  58. Hislop EC, Cox TW. Effects of captan on the non-parasitic microflora of apple leaves. Trans Br Mycol Soc 1969;52:223–235.
  59. Waxman MF. The Agrochemical and Pesticides Safety Handbook. 1 édition. Boca Raton: CRC Press, 1998.
  60. Draber W, Fujita T. Rational approaches to structure, activity, and ecotoxicology of agrochemicals. CRC Press, 1992.
  61. Wood, Alan. Compendium of Pesticide Common Names. Disponible sur : http://www.alanwood.net/pesticides/index.html.
  62. Battistini G, Finestrelli A, Brunelli A, Fiaccadori R. Evaluation of curative activity of old and recent fungicides on Venturia inaequalis. Atti Giornate Fitopatol Chianciano Terme Siena 8-11 Marzo 2016 Vol Secondo Alma Mater Studiorum, Universitá di Bologna, 2016;345‑51.
  63. Mattedi L, Forno F, Rizzi C, Forti D. Evaluation of the activity and the side effects on populations of predatory mite (Acarina, Phytoseiidae) of some fungicides for the control of apple scab (Venturia inaequalis)[Malus pumila Mill.-Trentino-Alto Adige]. Atti Delle Giornate Fitopatol Italy 1998;
  64. Mattedi L, Forno F, Rizzi C, Forti D. Evaluation of the effectiveness of some fungicides to control apple scab (Venturia inaequalis)[Malus pumila Mill.-Trentino]. Atti Delle Giornate Fitopatol Italy 2002;
  65. Bugiani R, Franceschelli F, Bevilacqua T, Antoniacci L, Rossi R. Efficacy evaluation of some fungicides for the control of apple scab [Malus pumila Mill.; Emilia-Romagna]. Atti Delle Giornate Fitopatol Italy 2006;
  66. Le catalogue des produits phytopharmaceutiques et de leurs usages, des matières fertilisantes et des supports de culture autorisés en France. Disponible sur : https://ephy.anses.fr/ppp/delan-wg.

 

Cette fiche est une mise à jour de la fiche originale du Guide de référence en production fruitière intégrée à l’intention des producteurs de pommes du Québec 2015. © Institut de recherche et de développement en agroenvironnement. Reproduction interdite sans autorisation.

bannière des principaux partenaires de réalisation et commanditaires du Guide de PFI